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Inflation: a very brief 
review



Inflation

‘Invented’ to solve problems of the big bang:

Horizon problem

Monopole problem

Flatness problem

Period of rapid accelerated expansion in the 
early universe
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Gives primordial spectrum of density perturbations!
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Only single field 
models!



Isocurvature/entropy/
non-adiabatic pressure 

perturbations



Isocurvature/entropy/non-
adiabatic Pressure Perturbations

Adiabatic system

Breaking requirement of adiabaticity allows the 
pressure perturbation to be expanded as

The non-adiabatic pressure perturbation can 
then be defined as

�P

Ṗ
=

�⇢

⇢̇

�P

Ṗ
6= �⇢

⇢̇
�P =

Ṗ

⇢̇
�⇢+ · · ·

�Pnad = �P � c2s�⇢



Entropy Perturbations

Thus require a fluid with equation of state 
depending on two independent variables, i.e.

Inflationary fields can be written as fluids:

- single field has barotropic equation of state 
and so, on large scales, no isocurvature

- multiple fields, entropy perturbations can be 
non-zero, and may be important

P ⌘ P (⇢, S)



Why Isocurvature? 1: Vorticity

In classical fluid dynamics, vorticity:

Evolves according to

‘Source term’ zero if         and        are parallel

- i.e. barotropic fluid, no source term

- including entropy allows for a source term

@!

@t
= r⇥ (v ⇥ !) +

1

⇢2
r⇢⇥rP

~! = ~r⇥ ~u

~rP ~r⇢

Crocco (1937)



Vorticity in Cosmology

Relativistic generalisation, consider vorticity 
tensor in a perturbed FLRW universe

Linear perturbations have no source term and 
decay with expansion

!0
1ij � 3Hc2sw1ij = 0

Kodama & Sasaki (1984)



Vorticity in Cosmology

Relativistic generalisation, consider vorticity 
tensor in a perturbed FLRW universe

Linear perturbations have no source term and 
decay with expansion

!0
1ij � 3Hc2sw1ij = 0

Kodama & Sasaki (1984)

!0
2ij � 3Hc2s!2ij =

2a

⇢0 + P0

(
3HV1[i�Pnad1,j] +

�⇢1,[j�Pnad1,i]

⇢0 + P0

)

AJC, Malik & Matravers (2009)

Beyond linear theory source term depends 
upon the entropy perturbations



Why Isocurvature? 2: CMB?

Planck Collaboration: Constraints on inflation 33

included in the summary Table 12. The power spectra PRR(k),
PRI(k), and PII(k) are normalized according to the primordial
values of the fields R(x) and I(x) defined above. It is interest-
ing to consider how much isocurvature is allowed expressed as a
fraction of the power in three bands spanning the CMB temper-
ature spectrum observed by Planck. To this end, we define the
following derived quantities

↵RR(`min, `max) =
(�T )2

RR(`min, `max)
(�T )2

tot(`min, `max)
, (68)

↵II(`min, `max) =
(�T )2

II(`min, `max)
(�T )2

tot(`min, `max)
, (69)

↵RI(`min, `max) =
(�T )2

RI(`min, `max)
(�T )2

tot(`min, `max)
, (70)

where

(�T )2
X(`min, `max) =

`max
X

`=`min

(2` + 1)CTT
X,` . (71)

The 95% confidence limits from the one-dimensional posterior
distributions for these fractional contributions in the full range
(`min, `max) = (2, 2500) are shown in Table 12. The range of al-
lowed values for ↵RR(2, 2500) is a measure of the adiabaticity of
fluctuations in the CMB. The posterior distributions of the frac-
tions ↵II, ↵RI in three multipole ranges are shown in Fig. 23.
We also report the primordial isocurvature fraction, defined as

�iso(k) =
PII(k)

PRR(k) + PII(k)
(72)

at three values of k. Table 12 also shows the effective �2 =
�2 lnLmax for all models, compared to the minimal six-
parameter⇤CDM model. In Fig. 24 we show the ratio of temper-
ature spectra for the best-fit mixed model to the adiabatic model.

Fig. 22. Two dimensional distributions for power in isocurvature
modes, using Planck+WP data.

Fig. 23. Fractional contribution of isocurvature modes to the
spectrum. We show the distributions ↵II(2, 20), ↵RI(2, 20),
↵II(21, 200), ↵RI(21, 200), ↵II(201, 2500), ↵RI(201, 2500) de-
fined in Eq. 70 for the CDI, NDI, NVI modes, constrained with
Planck+WP data.
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Fig. 24. Temperature spectrum of best-fit models with a mix-
ture of adiabatic and isocurvature modes. Top: spectrum of the
best-fit mixed models relative to that of the pure adiabatic model.
Bottom: zoom on the Sachs-Wolfe plateau of the best-fit temper-
ature spectrum D` = [`(`+1)/2⇡]CTT

` , for each of the three cases
plus the pure adiabatic model, shown together with Planck low-`
data points.

The results for ↵RR(2, 2500) show that the nonadiabatic con-
tribution to the temperature variance can be as large as 7% (9%,
5%) in the CDI (NDI, NVI) model (95% CL). These results are
driven by the fact that on large scales, for l  40, the Planck
data points on average have a slightly smaller amplitude than
the best-fitting ⇤CDM model. Hence the data prefer a signifi-



Isocurvature Perturbations

We consider multi-field inflationary models 
with Lagrangian

with double quartic, quadratic and product 
exponential potentials

Study isocurvature perturbations

- after inflation

- after period of perturbative reheating

L(',�) = 1

2
('̇2 + �̇2) + U(',�)



Multi-Field Inflation
Double quadratic

Double quartic

Product exponential

Solve background field dynamics and linear 
perturbations numerically
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1

2
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Kodama et al. (2011)
Avgoustidis et. al. (2011)

V (',�) = V0'
2e���2 Byrnes, Choi & Hall (2008)

'̈+ 3H'̇+ V,' = 0

http://pyflation.ianhuston.net/Huston & AJC, PRD 85, 063507 (2012)

http://pyflation.ianhuston.net
http://pyflation.ianhuston.net


Compute non-adiabatic pressure perturbation

by defining the pressure and energy density 
perturbation of the scalar fields as

�Pnad = �P � c2s�⇢

�P =
X

↵

⇣
'̇↵

˙�'↵ � '̇↵
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2�+ V,↵�'↵

⌘



Double Quadratic

0102030405060
Nend �N

10�55

10�49

10�43

10�37

10�31

10�25

10�19

k3P�P /(2⇡2)

k3P�Pnad/(2⇡2)

Huston & AJC (2012)



Double Quartic
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Product Exponential
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Reheating
How do the scalar fields driving inflation decay 
into the standard model?

Include an additional friction term in the scalar 
field equation

Usually, one considers the decay of the fields 
into radiation

In order to allow isocurvature to survive, 
consider decay into both radiation and matter, 
subject to constraint

'̈+ (3H +
1

2
�)'̇+ U,' = 0

�m

��
< 10�6



Evolution equations from energy-momentum 
conservation

Fluid equations

Field equations

And similarly (though more complicated) for 
perturbations

rµT
µ
(↵)⌫ = Q(↵)

⌫

⇢̇� + 4H⇢� =
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2
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�'
� '̇

2 + ��
� �̇
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m

⌘i
'̇+ U,' = 0
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2 + ��
m�̇

2
⌘



Solve the evolution equations for the scalar 
field and matter/radiation fluids

Again, non-adiabatic pressure perturbation is 
computed, defined as

Now, contribution from the scalar fields, but 
also from the fluids, i.e.

�Pnad = �P � c2s�⇢

�Pnad =
1

3
�⇢�

"
1� ⇢̇�

˙⇢m + ⇢̇�

#
� 1

3

⇢̇��⇢m
˙⇢m + ⇢̇�

Huston & AJC, arXiv:1302.4298 



Double quadratic 
inflation
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Double quartic 
inflation
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Product exponential
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Summary
Isocurvature perturbations common in multi-
field models; can source source vorticity?

Reheating should be taken into account when 
isocurvature perturbations are present

Non-adiabatic pressure perturbation 
subdominant in all three models studied

BUT parameter choice conservative: could we 
saturate the bounds to source isocurvature?

Huston & AJC, PRD 85, 063507 (2012)

Huston & AJC, 1302.4298 (2013)


